

January 2016

- Pletronics' SM55 Series is a quartz crystal controlled precision square wave generator with a CMOS output.
- The package is designed for high density surface mount designs.
- This is a low cost mass produced oscillator.
- Tape and Reel or cut tape packaging is available.
- 0.8 to 165 MHz
- 3.2 x 5 mm LCC Ceramic Package
- Enable/Disable Function
- Disable function includes low standby power mode
- Low Jitter
- Optimized for fastest Trise & Tfall

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2011/65/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's Weight of the Device: 0.064 grams Moisture Sensitivity Level: 1 As defined in J-STD-020C Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit
V _{CC} Supply Voltage	-0.5V to +7.0V
Vi Input Voltage	-0.5V to V _{CC} + 0.5V
Vo Output Voltage	-0.5V to V_{CC} + 0.5V
lo Output Current	+25 mA to -25 mA

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 30 to 50°C/Watt depending on the solder pads, ground plane and construction of the PCB.

January 2016

Part Number:

SM55	45	G	Е	X	- 75.0M	-xx	
							Packaging code or blank T250 = 250 per Tape and Reel T500 = 500 per Tape and Reel T1K = 1000 per Tape and Reel
							Frequency in MHz
							Supply Voltage V _{cc} X = 1.8V <u>+</u> 10%
							Optional Enhanced OTR Blank = Temp. range -10 to +70°C C = Temp. range -20 to +70°C E = Temp. range -40 to +85°C
							Series Model
							Frequency Stability 45 = ± 50 ppm 44 = ± 25 ppm 20 = ± 20 ppm
							Series Model

Part Marking and Legend:

P ff.fff M • YMDxx • YYWWxx	PLE SM55 ff.fff M • YMDxx	P5xYWWx • ff.fff M	5xYWWxx ff.fff M • PLE <i>xx</i>
--------------------------------	---------------------------------	-----------------------	--

PLE= Pletronicsff.fff M or ff.ff M= Frequency in MHzYYWW or YWW or YMD= Date of Manufacture (year and week, or year-month-day)All other marking is internal factory codes

Specifications such as frequency stability, supply voltage and operating temperature range, etc. are not identified from the marking. External packaging labels and packing list will correctly identify the ordered Pletronics part number.

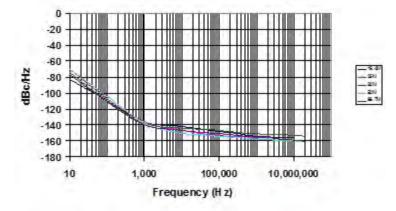
Code	Codes for Date Code YMD																	
Code	4	5	6	7	8	Coc	le A	В	С	D	E	F	G	Н	J	K	L	М
Year	2014	2015	2016	6 2017	201	8 Mon	th JAN	N FEB	MAF	R APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
C	Code		1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	G
	Day		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
C	Code		Н	J	Κ	L	М	Ν	Р	R	Т	U	V	W	Χ	Y	Z	
	Day		17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

January 2016

Electrical Specification for 1.80V ±10% over the specified temperature range

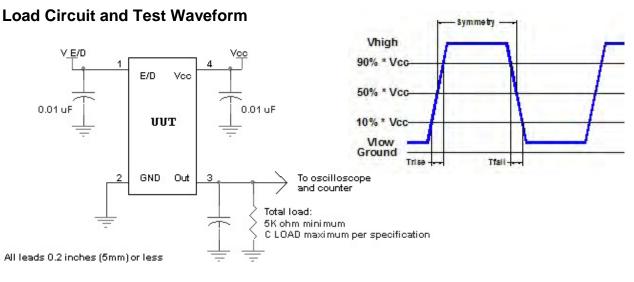
Item	Min	Max	Unit	Condition
Frequency Range	0.8	165	MHz	
Frequency Accuracy "45"	-50	+50	ppm	For all supply voltages, load changes, aging for 1
"44"	-25	+25		year, shock, vibration and temperatures
" 20 "	-20	+20		
Output Waveform		CMOS		
Output High Level	90	-	%	of V _{cc} for I _{OH} = +2 mA <35 MHz
	70	-		of V _{cc} for I _{OH} = +8 mA \geq 35 MHz
Output Low Level	-	10	%	of V _{cc} for I _{oL} = -2 mA <35 MHz
	-	30		of V _{cc} for I _{oL} = -8 mA \geq 35 MHz
Output Symmetry	45	55	%	at 50% point of $V_{\rm cc}$ (See load circuit)
Jitter Output: 1 to 15 MHz	-	6.0	pS RMS	10 Hz to 1 MHz from the output frequency
Output: 15 to 35 MHz	-	5.0	pS RMS	
Output: 35 to 50 MHz	-	4.0	pS RMS	
Output: 50 to 70 MHz	-	3.0	pS RMS	
Output: > 70 MHz	-	2.5	PS RMS	
Output: 25 to 70 MHz	-	0.7	pS RMS	12 KHz to 20 MHz from the output frequency
Output: > 70 MHz	-	0.6	pS RMS	
E/D Internal Pull-up	50	500	Kohm	to V _{cc}
V disable	-	30	%	of V_{cc} applied to pin 1
V enable	70	-	%	
Output leakage $V_{OUT} = V_{CC}$	-10	+10	uA	Pin 1 low, device disabled
$V_{OUT} = 0V$	-10	+10	uA	
Standby Current I_{cc}	-	4	uA	< 35 MHz
	-	100	uA	<u>></u> 35 MHz
Enable time	-	250	nS	Time for output to reach a logic state
Disable time	-	250	nS	Time for output to reach a high Z state
Start up time	-	10	mS	Time for output to reach specified frequency
Operating Temperature	-10	+70	۵°C	Standard Temperature Range
Range	-20	+70	°C	Extended Temperature Range "C" Option
	-40	+85	°C	Extended Temperature Range "E" Option
Storage Temperature Range	-55	+125	°C	

January 2016


Item	Тур	Max	Unit	Condition				
Output T_{RISE} and T_{FALL}	1.5	3	nS	< 35 MHz	$C_{LOAD} = 15 \text{ pF}$			
	1.7	3.5	nS	<u>></u> 35 MHz and < 70 MHz	20% to 80% of V _{cc} See Load Circuit			
	1.5	2.5	nS	<u>></u> 70 MHz				
	4	7	nS	< 35 MHz	C _{LOAD} = 30 pF 20% to 80% of V _{CC}			
	2	7	nS	<u>></u> 35 MHz < 70 MHz	See Load Circuit			
	6	12	nS	< 35 MHz	C _{LOAD} = 50 pF 20% to 80% of V _{CC}			
	6	11	nS	\geq 35 MHz and < 45 MHz	See Load Circuit			
V _{cc} Supply Current (I _{cc})	2	4	mA	< 8 MHz	$C_{LOAD} = 15 \text{ pF}$			
	2.5	5	mA	<u>></u> 8 MHz and < 16 MHz				
	5	8	mA	<u>></u> 16 MHz and < 35 MHz				
	-	18	mA	<u>></u> 35 MHz and < 70 MHz				
	17	27	mA	<u>></u> 70 MHz and < 120 MHz				
	23	37	mA	<u>></u> 120 MHz				
	2.5	4.5	mA	< 8 MHz	$C_{LOAD} = 30 \text{ pF}$			
	3	5	mA	<u>></u> 8 MHz and < 16 MHz				
	4	8	mA	<u>></u> 16 MHz and < 35 MHz				
	10	20	mA	<u>></u> 35 MHz and < 70 MHz				
	2.5	4	mA	< 8 MHz	C _{LOAD} = 50 pF			
	4	6	mA	<u>></u> 8 MHz and < 16 MHz				
	5	9	mA	<u>></u> 16 MHz and < 35 MHz				
	13	23	mA	<u>></u> 35 MHz and < 45 MHz				

Electrical Specification for 1.80V ±10% over the specified temperature range

Specifications with Pad 1 E/D open circuit


NOTE: Not specified for 50 pF loads above 45 MHz, or 30 pF loads above 70 MHz

Typical phase noise plot for 5 oscillators at different output frequencies.

January 2016

Reliability: Environmental Compliance

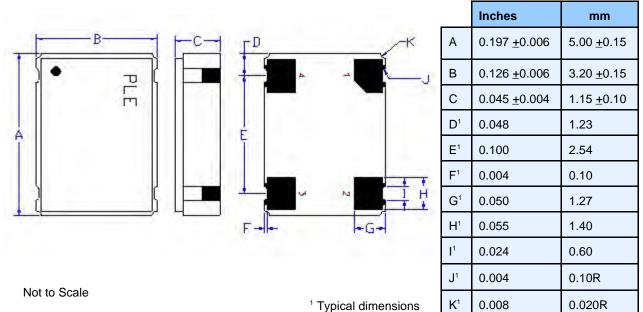
Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

ESD Rating

Model	Minimum Voltage	Conditions		
Human Body Model	1500	MIL-STD-883 Method 3115		
Charged Device Model	1000	JESD 22-C101		

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Courier New Bar code is 39-Full ASCII


Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

RoHS Compliant 2nd LvL Interconnect Category=e4 Max Safe Temp=260C for 10s 2X Max

January 2016

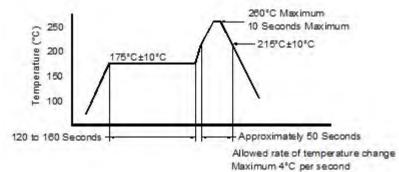
Mechanical:

Contacts :

Gold 11.8 to 39.4 µinches (0.3 to 1.0 µm) over Nickel 50 to 350 µinches (1.27 to 8.89 µm)

Pad	Function	Note
1	Output Enable/Disable	When this pad is not connected the oscillator shall operate. When this pad is logic low the output will be inhibited (high impedance state.) Recommend connecting this pad to V_{cc} if the oscillator is to be always on.
2	Ground (GND)	
3	Output	
4	Supply Voltage (V _{cc})	Recommend connecting appropriate power supply bypass capacitors as close as possible.

Layout and application information

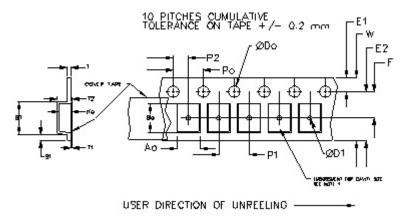

For Optimum Jitter Performance, Pletronics recommends:

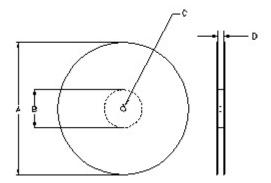
- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.

January 2016

Reflow Cycle (typical for lead free processing)

The part may be reflowed 3 times without degradation.


Tape and Reel: available for quantities of 250 to 1000 per reel, cut tape for < 250


Constant Dimensions Table 1											
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max			
8mm		1.0			2.0						
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05						
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1			
24mm		1.5			<u>+</u> 0.1						

	Variable Dimensions Table 2										
							Ao, Bo & Ko				
16 mm	12.1	14.25	7.5 <u>+</u> 0.1	8.0 <u>+</u> 0.1	8.0	16.3	Note 1				

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm Not to scale

		REE	REEL DIMENSIONS								
А	inches	7.0	10.0	13.0							
	mm	177.8	254.0	330.2							
в	inches	2.50	4.00	3.75							
	mm	63.5	101.6	95.3	Tape Width						
С	mm	13	13.0 +0.5 / -0.2								
D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0						

Reel dimensions may vary from the above